Chemistry Letters 1999 1125 ## Preparation of Pt/SiO₂ Ultra-fine Particles in Reversed Micelles and Their Catalytic Activity Toshihiro Miyao, Noritaka Toyoizumi, Satoko Okuda, Yoko Imai, Kazuo Tajima, and Shuichi Naito* Department of Applied Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 Department of Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Received June 28, 1999; CL-990565) Ultra fine Pt particles supported on SiO₂ was successfully prepared by the hydrolysis of tetraethoxysilane in the same reversed micellar solution of previously mono-dispersed Pt particles. Formed Pt/SiO₂ surface was partly covered with the residue of surfactant, which caused the inhibition of hydrogen adsorption as well as hydrogenation of propene. In recent years, the preparation of ultra fine particles in a reverse micellar system has attracted great attention because of its possibility to obtain mono-dispersed particles in nm size. A wide variety of nano size particles has been synthesized by this method, including noble metals (Pt¹, Rh¹, Pd², Au³), metal oxides (SiO₂⁴, ZrO₂⁵) and mixed oxides (ZrO₂-Y₂O⁶). In this connection, nano-sized metal/metal oxide particles prepared in the reverse micellar system could be excellent candidates for practical supported metal catalysts, but studies so far have been limited to only Rh/SiO₂⁵ and Pd/ZrO₂⁵. This study is the first investigation of the preparation of Pt ultra fine particles successfully dispersed on SiO_2 by employing the reverse micellar system. The controlling factors to disperse Pt particles uniformly onto silica and their adsorption capacity for hydrogen were investigated in depth as well as catalytic activity for hydrogenation of propene. The reverse micellar system used in this study composed of Aerosol OT (AOT)/heptane and polyoxyethylene-nonylphenyl ether (NP-6)/cyclohexane, whose concentration was 100 mmol/l in both solutions. The aqueous H₂PtCl₆·6H₂O solution (40 mmol/l) was added into AOT/heptane or NP-6/cyclohexane solution adjusting Rw= 5 (water to surfactant ratio), and stirred at 293 K for 5 h. The resulting micellar solution was reduced with NaBH₄, N₂H₄ or H₂, and a uniformly dispersed solution of ultra fine Pt particles was obtained. The formed Pt particle sizes were independent of the Rw value, but strongly dependent on the reduction methods and /or the properties of surfactants. To prepare Pt/SiO₂ particles, tetraethoxysilane (TEOS) and NH₃ solution was added successively into the dispersed solution of Pt particles, and the hydrolysis of TEOS was carried out at 293 K for 3 days. The particle sizes of Pt and SiO₂ thus obtained were determined by TEM measurement. The dispersion of Pt/SiO₂ after H₂ pretreatment at 573 K was determined by H₂ adsorption at 273 K. The catalytic activities for propene hydrogenation were tested in the closed circulation system at 293 K and 200 Torr of total pressure. The composition of the gas phase was analyzed by TCD gas chromatography. In the case of AOT/heptane micellar system, monodispersed Pt particles were prepared by the reduction with NaBH₄ or H₂. Three different methods were employed to fix these Pt particles onto SiO₂ as follows; (1) conventional impregnation with commercial SiO₂ powder (Aerosil 300), (2) mixing two separately prepared micellar solutions of Pt and SiO₂ particles (3) hydrolysis of TEOS by ammonia solution in the same micellar solution of Pt. As shown in Figure 1(a), Pt particles supported on SiO₂ by the first impregnation method were aggregated on the silica During the impregnation in hydrophobic heptane solution, the Pt particles, which are also hydrophobic by surrounding alkyl chains of AOT, may aggregate on the hydrophilic surface of SiO₂ during evaporation. The second mixing method also gave the aggregate of Pt particles as shown in Figure 1(b). This suggests that the interaction between Pt and SiO₂ particles, which have been separately prepared in the reverse micellar solutions before mixing, is very weak because of the repulsion by the alkyl chains of the AOT molecule adsorbed on both the Pt and silica particles. In contrast to the above mentioned two methods, the successful dispersion of Pt on SiO₂ was obtained by the third hydrolysis method as shown in Figure 1(c). Since the hydrolysis of TEOS takes place at the interface of the water droplet in the reverse micelle containing Pt particles, the stronger interaction may be achieved between Pt and SiO₂ particles in this case. In the AOT/heptane system, it was difficult to use N₂H₄ as a reducing agent because of the polymerization of AOT, as reported by Clint et al.⁹ Figure 1. TEM images of Pt-SiO₂ (AOT / heptane, reduced with NaBH₄). (a) impregnation, (b) mixing after hydrolysis, (c) hydrolysis after dispersing Pt In the case of NP6/cyclohexane reverse micellar system, when H₂PtCl₆ was reduced with N₂H₄, aggregated particles were obtained as shown in Figure 2(a). These aggregated Pt particles were coated with SiO₂ after the addition of TEOS, followed by its hydrolysis with ammonia (Figure 2(b)). On the other hand, Pt particles reduced with NaBH₄ showed successful dispersion, and Pt/SiO2 obtained after TEOS hydrolysis also showed good Pt dispersion as shown in Figure.2(c). To elucidate the different behavior of reducing agents, NaBO2 was added to the dispersed solution of Pt particles prepared by the reduction with N₂H₄ and the hydrolysis of TEOS was carried out. The obtained Pt particles exhibited good dispersion on SiO₂, indicating that the presence of the ions like NaBO2 formed during NaBH₄ decomposition may suppress the aggregation of For the preparation of Ag particles in reversed Pt particles. micelles¹⁰, it is reported that by using N₂H₄ instead of NaBH₄, the size distribution of Ag particle obtained from the Ag salt broadened. **Table 1.** Properties of Pt-ultra fine particles supported on SiO₂ | Surfactant | Reductant | Particle size / nm ^a | | | | | | | |------------------|-----------|---------------------------------|---------|------|-------|------------------|--------------------|-----------------------| | | _ | SiO ₂ | | | Pt | | | | | | - | TEM | (s.d.°) | BET | TEM | XRD ^b | H ₂ ads | . (H/Pt) ^e | | AOT | NaBH₄ | 49.1 | (25.1) | 20.5 | 2.2 | 1.6 | 6.4 ^d | (0.21) | | AOT | H_2 | - | (-) | - | 4.4 | 1.7 | - | | | NP6 | NaBH₄ | 85.5 | (11.8) | - | 3.2 | - | - | | | NP6 | N_2H_4 | 34.8 | (14.1) | 14.0 | 4.8 | 2.1 | - | | | $\mathrm{NP6^d}$ | N_2H_4 | - | (-) | - | 35.9⁴ | - | 57.9 ^d | (0.03^{d}) | ^aas prepared, ^bestimated with Scherrer equation, ^cstandard deviation(%), ^dafter reduction at 573 K, ^cadsorbed at R.T. and atmospheric pressure. **Figure 2.** TEM images of Pt-SiO₂ (NP-6 / cyclohexane). (a) Pt aggregates reduced with N_2H_4 , (b) hydrolysis after dispersing Pt prepared with N_2H_4 reduction, (c) hydrolysis after dispersing Pt prepared with NaBH₄ reduction. Table 1 summarizes the particle sizes of SiO₂ support as well as dispersed Pt, determined by TEM and BET analyses. The particle sizes of Pt and SiO₂ prepared in the AOT/heptane system were smaller than those prepared in the NP6/cyclohexane system. From the values of standard deviation in the parentheses, it is recognized that size distribution of the SiO₂ particles prepared in the NP6 system is narrower than that prepared in the AOT system. It is worth noticing that the particle size determined by BET analysis was smaller than that determined by TEM measurements, suggesting the porous structure of SiO₂ particles obtained by the reverse micellar system. It is possible that the AOT molecule adsorbed on the particle on which the hydrolysis of TEOS occured may inhibit the production of siloxane bonding from dehydration of silanol group. To investigate the surface state and catalytic activity of Pt/SiO₂ prepared in reverse micellar system, H₂ adsorption capacity as well as propene hydrogenation were investigated after the pretreatment by H₂ at 573 K. As shown in Table 1, the particle size estimated from the amount of adsorbed hydrogen at 273 K was less than the TEM particle size, which suggests that Pt surface may be partly covered by residual carbon chains of surfactants and inhibit hydrogen adsorption. Figure 3 shows the catalytic activities for hydrogenation of propene at 293 K on the Pt/SiO₂ prepared by reverse micellar system. The rate of propane formation after H₂ pretreatment at 573K was less than that of after O₂ pretreatment at the same temperature. Over conventional Pt-group catalysts, their catalytic activities for alkene hydrogenation appear much higher in reducing state of metals compared to oxidized state. The opposite results in this study may be caused by the same reason as the inhibition of H₂ adsorption mentioned above. On the reduced surface, the alkyl chains of the residue of surfactant may adsorb to the Pt more strongly than on the oxidized surface **Figure 3.** Hydrogenation of propene over Pt/SiO₂ catalysts prepared in AOT/heptane reverse micelles, at 293 K. Total pressure=20 Torr. (open symbol; after oxidation, closed symbol; after reduction) and inhibit the propene hydrogenation. The inhibition was removed by the reoxidation of the reduced catalyst. this point clearer, temperature programmed desorption spectra of hydrogen over Pt/SiO₂ prepared in reverse micellar system were compared with those of conventionally prepared catalysts. In the desorption spectra over conventionally prepared catalysts, two distinct desorption peaks were observed at around 473 K and 673 K. On the other hand, from the desorption spectra over the reverse micellar catalyst, the only one peak at higher The missing of the lower TPD temperature was observed. peak of H, in the reverse micellar catalysts is consistent with the consideration mentioned above. Kishida et al.11 reported that, on Rh/SiO₂ catalyst prepared by reverse micellar method and calcined at 773 K, the reaction rate of CO₂ hydrogenation was much faster than that on the Rh/SiO₂ catalyst prepared by conventional impregnation. Accordingly, in this study, higher temperature of calcination may lead to higher activities of the reduced Pt/SiO₂ catalysts prepared in the reverse micelles. ## References - M. Boutonnet, J. Kizling, P. Stenius, and G. Maire, Colloids and Surfaces, 5, 209 (1982). - D.-H. Chen, C.-C. Wang, and T.-C. Huang, J. Colloid Interafce Sci., 210, 123 (1999). - K. Kurihara, J. Kizling, P. Stenius, and J.H. Fendler, J. Am. Chem. Soc., 105, 2574 (1983). - 4 H. Yamauchi, T. Ishikawa, S. Kondo, Colloids and Surfaces, 37, 71 (1989). - T. Kawai, A. Fujino, and K. Kon-no, Colloids and Surfaces, 109, 245 (1996). - 6 X. Fang and C. Yang, J. Colloid and Interface Sci., 212, 242(1999). - 7 M. Kishida, T. Tago, Y. Shibata, P. Dhupatemiya, T. Sashida, and K. Wakabayashi, Shokubai, 40, 395 (1998). - 8 W.-Y. Kim, H. Hayashi, M. Kishida, H. Nagata, and K. Wakabayashi, *Applied Catalysis A*, **169**, 157 (1998). - J.H. Clint, I.R. Collins, J.A. Williams, B.H. Robinson, T.F. Towey, P. Cajean, and A.K.- Lodhi, Faraday Discuss., 95, 219 (1993). - 10 K. Kon-no, Surface Sci. Ser., 70, 562 (1997). - M. Kishida, T. Fujita, K. Umakoshi, J. Ishiyama, H. Nagata, and K. Wakabayashi, J. Chem. Soc. Commun., 1995, 763.